<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
pmid: 37059095
To perform their physiological functions, amino methyl propionic acid receptors (AMPARs) cycle through active, resting, and desensitized states, and dysfunction in AMPAR activity is associated with various neurological disorders. Transitions among AMPAR functional states, however, are largely uncharacterized at atomic resolution and are difficult to examine experimentally. Here, we report long-timescale molecular dynamics simulations of dimerized AMPAR ligand-binding domains (LBDs), whose conformational changes are tightly coupled to changes in AMPAR functional states, in which we observed LBD dimer activation and deactivation upon ligand binding and unbinding at atomic resolution. Importantly, we observed the ligand-bound LBD dimer transition from the active conformation to several other conformations, which may correspond with distinct desensitized conformations. We also identified a linker region whose structural rearrangements heavily affected the transitions to and among these putative desensitized conformations, and confirmed, using electrophysiology experiments, the importance of the linker region in these functional transitions.
Protein Domains, Receptors, AMPA, Molecular Dynamics Simulation, Ligands, Dimerization
Protein Domains, Receptors, AMPA, Molecular Dynamics Simulation, Ligands, Dimerization
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 4 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |