Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Structurearrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Structure
Article . 2023 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
Structure
Article . 2023
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Desensitization dynamics of the AMPA receptor

Authors: Jussi Aittoniemi; Morten Ø. Jensen; Albert C. Pan; David E. Shaw;

Desensitization dynamics of the AMPA receptor

Abstract

To perform their physiological functions, amino methyl propionic acid receptors (AMPARs) cycle through active, resting, and desensitized states, and dysfunction in AMPAR activity is associated with various neurological disorders. Transitions among AMPAR functional states, however, are largely uncharacterized at atomic resolution and are difficult to examine experimentally. Here, we report long-timescale molecular dynamics simulations of dimerized AMPAR ligand-binding domains (LBDs), whose conformational changes are tightly coupled to changes in AMPAR functional states, in which we observed LBD dimer activation and deactivation upon ligand binding and unbinding at atomic resolution. Importantly, we observed the ligand-bound LBD dimer transition from the active conformation to several other conformations, which may correspond with distinct desensitized conformations. We also identified a linker region whose structural rearrangements heavily affected the transitions to and among these putative desensitized conformations, and confirmed, using electrophysiology experiments, the importance of the linker region in these functional transitions.

Related Organizations
Keywords

Protein Domains, Receptors, AMPA, Molecular Dynamics Simulation, Ligands, Dimerization

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    4
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
4
Top 10%
Average
Average
hybrid