<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Using single particle electron cryomicroscopy, several helices in the membrane-spanning region of RyR1, including an inner transmembrane helix, a short pore helix, and a helix parallel to the membrane on the cytoplasmic side, have been clearly resolved. Our model places a highly conserved glycine (G4934) at the hinge position of the bent inner helix and two rings of negative charges at the luminal and cytoplasmic mouths of the pore. The kinked inner helix closely resembles the inner helix of the open MthK channel, suggesting that kinking alone does not open RyR1, as proposed for K+ channels.
Structural Biology, Structural Homology, Protein, Cryoelectron Microscopy, Molecular Sequence Data, Animals, Ryanodine Receptor Calcium Release Channel, Amino Acid Sequence, Rabbits, Muscle, Skeletal, Molecular Biology, Protein Structure, Secondary, Protein Structure, Tertiary
Structural Biology, Structural Homology, Protein, Cryoelectron Microscopy, Molecular Sequence Data, Animals, Ryanodine Receptor Calcium Release Channel, Amino Acid Sequence, Rabbits, Muscle, Skeletal, Molecular Biology, Protein Structure, Secondary, Protein Structure, Tertiary
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 142 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |