
pmid: 24331361
Dysfunction of the mitochondrial (mt) system is thought to play an important role in the mechanism of progression of various neurodegenerative disorders, including demyelinating disorders. They are characterized by neuroinflammation, ultimately leading to neurodegeneration. Mitochondria (mt) dysfunction is closely related to the mechanism of neuroinflammation, causing increased production of reactive oxygen species, which is detrimental to neurons and glia. Vice versa, neuroinflammation is increasingly recognized to produce mt failure, which then contributes to further neuronal injury and degeneration. Multiple sclerosis and X-linked adrenoleukodystrophy are examples of neurodemyelinating diseases that despite having a diverse etiology have in common a progressive course and significant neuroinflammation and neurodegeneration, leading to severe neurologic disability. The scientific community has become increasingly interested in how mt dysfunction relates to neuroinflammation and demyelination and what role it may play in the natural history of progressive demyelinating diseases. Research studies investigating how mt failure contributes to the progression of these conditions are emerging. A better understanding of the role of oxidative stress in progressive inflammatory demyelinating diseases might generate new potential neuroprotective therapeutic approaches for these devastating neurologic conditions.
Neurons, Mitochondrial Diseases, Models, Neurological, Axons, Mitochondria, Oligodendroglia, Oxidative Stress, Disease Progression, Humans, Molecular Targeted Therapy, Myelin Sheath, Demyelinating Diseases
Neurons, Mitochondrial Diseases, Models, Neurological, Axons, Mitochondria, Oligodendroglia, Oxidative Stress, Disease Progression, Humans, Molecular Targeted Therapy, Myelin Sheath, Demyelinating Diseases
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 36 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
