
Abstract We have demonstrated the feasibility of a gummy bear-based gnathodynamometer for masticatory diagnostics. Using a gummy bear as a force transducer and bamboo cantilevers as mechanical springs, the masticatory force of a human mandible can be measured via electrical impedance measurement (presented as the output voltage of the gnathodynamometer). The frequency response of the gummy bear is experimentally tested from 0.1 to 100 kHz and shown to be consistent with the analytical model. For a given driving frequency, the output voltage of the gnathodynamometer is experimentally measured for a range of stimulated masticatory forces (˜3.49 to 88.50 N). The masticatory force limit is also adjustable via the driving frequency (10 to 100 kHz) and cantilever length (via sliding datum, L = 95, 75, and 50 mm). This also adjusts the masticatory force sensitivity in the range of ˜17.5 to 40.5 mV/N. The clinical feasibility is also evaluated using three human subjects. The combination of candy (gummy bear) and diagnostics heralds a new class of low-cost medical devices that generate minimum recalcitrant medical waste and that are suitable for developing countries.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 3 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
