
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>pmid: 16476553
Our ability to harness tolerance mechanisms will have a major impact in organ transplantation. It should enable drug minimization, and eventually, the elimination of all immunosuppressive drugs. An improved understanding of the biology of regulatory T cells will make it possible to replace current induction regimens with those favouring the selective vaccination of T cells that prevent graft rejection. Once regulation is established, the continued supply of graft antigens should empower T cell regulation to become the dominant natural mechanism to prevent graft rejection.
Animals, Humans, Transplantation Tolerance, T-Lymphocytes, Regulatory
Animals, Humans, Transplantation Tolerance, T-Lymphocytes, Regulatory
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 70 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
