
We present an efficient approach for reconstructing full-color images from imagery data acquired using a color filter array (CFA). On the basis of our understanding of early visual processing in humans, we utilize a correlation among the multi-scale directional-anisotropy statistics observed in natural images in order to estimate the missing high-spatial-frequency chromatic signals. The directional anisotropy in the high-spatial-frequency component is efficiently and robustly estimated according to a mixture of anisotropy statistics derived from lower-frequency components. We show that, in spite of its simple implementation, our proposed method gives an excellent numerical performance as well as a perceptually natural output. The present approach is expected to provide a promising methodology for the on-line processing of recently rising high-resolution image data acquired using a single-sensor CFA. Efficient demosaicing method based on multi-scale representation of visual image.Mixture of directional-anisotropy statistics in natural images is utilized.Simple implementation, excellent numerical performance, and perceptually natural output.Promising approach for the on-line processing of large CFA images.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
