Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Signal Processingarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Signal Processing
Article . 2010 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

On the statistics of matching pursuit angles

Authors: Paulo S. R. Diniz; Lisandro Lovisolo; Eduardo A. B. da Silva;

On the statistics of matching pursuit angles

Abstract

Matching pursuit decompositions have been employed for signal coding. For this purpose, matching pursuit coefficients need to be quantized. However, their behavior has been shown to be chaotic in some cases; posing difficulties to their modeling and quantizer design. In this work, a different approach is presented. Instead of trying to model the statistics of matching pursuit coefficients, the statistics of the angle between the residue signal and the element selected in each iteration of the matching pursuit are studied, what allows to model matching pursuits coefficients indirectly. This approach results in a simple statistical model. This is so because one observes that the statistics of such angles do not vary substantially after the first matching pursuit iteration, and can be approximately modeled as independent and identically distributed. Moreover, it is also observed that the probability density functions of matching pursuit angles are reasonably modeled by a single probability density function. This function depends only on the dictionary employed and not on the signal source. The derived statistical model is validated by employing it to design Lloyd-Max quantizers for matching pursuit coefficients. The Lloyd-Max quantizers obtained show good ratexdistortion performance when compared to the state-of-the-art methods.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    10
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
10
Average
Average
Average
Upload OA version
Are you the author? Do you have the OA version of this publication?