Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Seizurearrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Seizure
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Seizure
Article . 2021 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Transcranial direct current stimulation (tDCS) in the management of epilepsy: A systematic review

Authors: Pedro Sudbrack-Oliveira; Marina Zanichelli Barbosa; Sigride Thome-Souza; Lais Boralli Razza; Jose Gallucci-Neto; Leandro da Costa Lane Valiengo; Andre Russowsky Brunoni;

Transcranial direct current stimulation (tDCS) in the management of epilepsy: A systematic review

Abstract

Current therapies for the management of epilepsy are still suboptimal for several patients due to inefficacy, major adverse events, and unavailability. Transcranial direct current stimulation (tDCS), an emergent non-invasive neuromodulation technique, has been tested in epilepsy samples over the past two decades to reduce either seizure frequency or electroencephalogram (EEG) epileptiform discharges.A systematic review was performed in accordance with PRISMA guidelines (PROSPERO record CRD42020160292). A thorough electronic search was completed in MEDLINE, EMBASE, CENTRAL and Scopus databases for trials that applied tDCS interventions to children and adults with epilepsy of any cause, from inception to April 30, 2020.Twenty-seven studies fulfilled eligibility criteria, including nine sham-controlled and 18 uncontrolled trials or case reports/series. Samples consisted mainly of drug-resistant focal epilepsy patients that received cathodal tDCS stimulation targeted at the site with maximal EEG abnormalities. At follow-up, 84 % (21/25) of the included studies reported a reduction in seizure frequency and in 43 % (6/14) a decline in EEG epileptiform discharge rate was observed. No serious adverse events were reported.Cathodal tDCS is both a safe and probably effective technique for seizure control in patients with drug-resistant focal epilepsy. However, published trials are heterogeneous regarding samples and methodology. More and larger sham-controlled randomized trials are needed, preferably with mechanistic informed stimulation protocols, to further advance tDCS therapy in the management of epilepsy.

Keywords

Epilepsy, Seizures, Humans, Electroencephalography, Transcranial Direct Current Stimulation

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    59
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
59
Top 1%
Top 10%
Top 1%
hybrid