Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao The Science of The T...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
The Science of The Total Environment
Article . 2019 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

A quantitative risk assessment method for synthetic biology products in the environment

Authors: Taylor Rycroft; Kerry Hamilton; Charles N. Haas; Igor Linkov;

A quantitative risk assessment method for synthetic biology products in the environment

Abstract

The need to prevent possible adverse environmental health impacts resulting from synthetic biology (SynBio) products is widely acknowledged in both the SynBio risk literature and the global regulatory community. To-date, however, discussions of potential risks of SynBio products have been largely speculative, and the limited attempts to characterize the risks of SynBio products have been non-uniform and entirely qualitative. As the SynBio discipline continues to accelerate and bring forth novel, highly-engineered life forms, a standardized risk assessment framework will become critical for ensuring that the environmental risks of these products are characterized in a consistent, reliable, and objective manner that incorporates all SynBio-unique risk factors. In their current forms, established risk assessment frameworks - including those that address traditional genetically modified organisms - fall short of the features required of this standard framework. To address this gap, we propose the Quantitative Risk Assessment Method for Synthetic Biology Products (QRA-SynBio) - an incremental build on established risk assessment methodologies that supplements traditional paradigms with the SynBio risk factors that are currently absent, and necessitates quantitative analysis for more transparent and objective risk characterizations. We demonstrate through a hypothetical case study that the proposed framework facilitates defensible quantification of the environmental risks of SynBio products in both foreseeable and hypothetical use scenarios. Additionally, we show how the quantitative nature of the proposed method can promote increased experimental investigation into the true likelihood of hazard and exposure parameters and highlight the most sensitive parameters where uncertainty should be reduced, ultimately leading to more targeted SynBio risk research and yielding more precise characterizations of risk.

Related Organizations
Keywords

Uncertainty, Synthetic Biology, Environment, Risk Assessment

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    18
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
18
Top 10%
Average
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!