
Tonotopy, the spatial organization of neurons based on their sound frequency responses, is a fundamental feature of the auditory pathway, extending from the cochlea to the auditory cortex. While excitatory neurons have been considered necessary for tonotopy in the cortex, the role of inhibitory interneurons remains unclear. Using a novel two-channel widefield Ca2+ imaging system, the 2-Channel Alternating exposure wide-Field Explorer (2-CAFE), we simultaneously measured the sound responsiveness of distinct neuron types in awake mice. Combined with two-photon imaging, we observed that GABAergic interneurons followed a similar tonotopic organization to the conventional auditory maps at both mesoscale and single-cell resolutions. Among the major interneuron subtypes-parvalbumin (PV), somatostatin (SST), and vasoactive intestinal peptide (VIP)-PV interneurons demonstrated a critical role in maintaining tonotopy. Inactivation of PV neurons, but not VIP or SST neurons, significantly weakened the tonotopic strength in the auditory cortex. These findings establish PV interneurons as essential components of auditory cortical tonotopy.
Widefield fluorescence imaging ; Tonotopy ; Auditory cortex ; Interneurons
Widefield fluorescence imaging ; Tonotopy ; Auditory cortex ; Interneurons
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
