Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Science Bulletinarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Science Bulletin
Article . 2025 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

Parvalbumin interneurons are essential for tonotopy strength in the auditory cortex

Authors: Tang, Xiaojing; Zhao, Zhikai; Li, Longhui; Tao, Jie; Chen, Yiheng; Polat, Mahiber; Yang, Zhiqi; +7 Authors

Parvalbumin interneurons are essential for tonotopy strength in the auditory cortex

Abstract

Tonotopy, the spatial organization of neurons based on their sound frequency responses, is a fundamental feature of the auditory pathway, extending from the cochlea to the auditory cortex. While excitatory neurons have been considered necessary for tonotopy in the cortex, the role of inhibitory interneurons remains unclear. Using a novel two-channel widefield Ca2+ imaging system, the 2-Channel Alternating exposure wide-Field Explorer (2-CAFE), we simultaneously measured the sound responsiveness of distinct neuron types in awake mice. Combined with two-photon imaging, we observed that GABAergic interneurons followed a similar tonotopic organization to the conventional auditory maps at both mesoscale and single-cell resolutions. Among the major interneuron subtypes-parvalbumin (PV), somatostatin (SST), and vasoactive intestinal peptide (VIP)-PV interneurons demonstrated a critical role in maintaining tonotopy. Inactivation of PV neurons, but not VIP or SST neurons, significantly weakened the tonotopic strength in the auditory cortex. These findings establish PV interneurons as essential components of auditory cortical tonotopy.

Keywords

Widefield fluorescence imaging ; Tonotopy ; Auditory cortex ; Interneurons

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Green
hybrid