Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Science Bulletinarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Science Bulletin
Article . 2025 . Peer-reviewed
License: CC BY
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Accelerated warming of High Mountain Asia predicted at multiple years ahead

Authors: Shuai, Hu; Tianjun, Zhou; Bo, Wu;

Accelerated warming of High Mountain Asia predicted at multiple years ahead

Abstract

High-Mountain Asia (HMA) is an important source of freshwater since it holds the largest reservoir of frozen water outside the polar regions. HMA feeds ten great rivers, ultimately supporting more than 2 billion people. However, the threat of accelerated glacier melt, which is a consequence of unprecedented global warming since the early 1950s, threatens water resources in the surrounding countries. Accurate predictions of the near-term temperature change and synergistic mass loss of glaciers are essential but challenging to implement because of the impacts of internal climate variability. Here, based on large ensembles of state-of-the-art decadal climate prediction experiments, we provide evidence that the internally generated surface air temperature variations in HMA can be predicted multiple years in advance, and the model initialization has robust added value to the decadal prediction skill. Real-time decadal forecasts suggest that the HMA will experience accelerated warming in 2025-2032, where the surface warming will increase by 0.98 °C (0.67 to 1.33 °C; 5 % to 95 % range) relative to the reference period 1991-2020, which is equivalent to 1.75 times the observed warming during 2016-2023. The decadal predictability originates from extratropical Pacific decadal variability modes, which modulate the convective heating in the tropical Pacific and influence HMA via the eastward-propagating atmospheric Kelvin waves. Accelerated warming in the coming decade will likely increase the shrinkage of the glacier volume over the HMA by 1.4 %. This change poses unprecedented challenges, including potential water scarcity, ecosystem disruption, and increased risk of natural disasters, to HMA and surrounding regions.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    12
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
12
Top 10%
Average
Top 10%
hybrid