<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
$B$ physics plays important roles in searching for the new physics (NP) beyond the standard model (SM). Recently, some deviations between experimental data and SM predictions were reported, namely $R(D^{(*)})$, $P_5^\prime$ and $R_{K^{(*)}}$ anomalies. If these anomalies were further confirmed in future, they would be unambiguous hints of NP. Theoretically, in order to explain these anomalies, a large number of models have been proposed, such as models including leptoquark or $Z^\prime$. However, these new particles have not been discovered directly in LHC. Moreover, the models should pass the examination of $B_s\to ��^+��^-$ and $B_s^0-\bar B_s^0$ mixing. In future, the analysis of data taken during the ongoing Run 2 of the LHC and the forthcoming Belle-II will present new insight both into the observables of interest and into new strategies to control uncertainties. Theoretically, the existed models should be further tested; and more NP models are welcomed to explain these anomalies simultaneously without affecting other measurements consistent with SM.
6 pages 2 figures. Invited short review for Science Bulletin
High Energy Physics - Phenomenology, High Energy Physics - Experiment (hep-ex), High Energy Physics - Phenomenology (hep-ph), FOS: Physical sciences, High Energy Physics - Experiment
High Energy Physics - Phenomenology, High Energy Physics - Experiment (hep-ex), High Energy Physics - Phenomenology (hep-ph), FOS: Physical sciences, High Energy Physics - Experiment
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 57 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |