
pmid: 16488145
Predicting the structure of protein-protein complexes using docking approaches is a difficult problem whose major challenges include identifying correct solutions, and properly dealing with molecular flexibility and conformational changes. Flexibility can be addressed at several levels: implicitly, by smoothing the protein surfaces or allowing some degree of interpenetration (soft docking) or by performing multiple docking runs from various conformations (cross or ensemble docking); or explicitly, by allowing sidechain and/or backbone flexibility. Although significant improvements have been achieved in the modeling of sidechains, methods for the explicit inclusion of backbone flexibility in docking are still being developed. A few novel approaches have emerged involving collective degrees of motion, multicopy representations and multibody docking, which should allow larger conformational changes to be modeled.
Models, Molecular, Binding Sites, Protein Conformation, Taverne, Protein Interaction Mapping, Proteins, Protein Binding
Models, Molecular, Binding Sites, Protein Conformation, Taverne, Protein Interaction Mapping, Proteins, Protein Binding
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 266 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
