
Nucleoside hydrolases cleave the N-glycosidic bond of ribonucleosides. Because of their vital role in the protozoan purine salvage pathway, nucleoside hydrolases from parasitic protozoa in particular have been studied extensively by X-ray crystallography, kinetic methods and site-directed mutagenesis. An elaborate network of conserved interactions between the metalloenzyme and the ribose enables steric and electrostatic stabilisation of the oxocarbenium-ion-like transition state. Activation of the leaving group by protonation before the formation of the transition state is a recurring catalytic strategy of enzymes that cleave N-glycosidic bonds. However, the mechanisms underlying leaving group activation are still the subject of debate for the nucleoside hydrolases.
Protein Folding, Binding Sites, Protein Conformation, Ribose, Catalysis, Substrate Specificity, Enzyme Activation, Structure-Activity Relationship, Structural Homology, Protein, N-Glycosyl Hydrolases, Protein Binding
Protein Folding, Binding Sites, Protein Conformation, Ribose, Catalysis, Substrate Specificity, Enzyme Activation, Structure-Activity Relationship, Structural Homology, Protein, N-Glycosyl Hydrolases, Protein Binding
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 103 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
