Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Spectrochimica Acta ...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Spectrochimica Acta Part A Molecular and Biomolecular Spectroscopy
Article . 2022 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Vibrational characterization of the pesticide molecule Tebuconazole

Authors: Zuzana Jurašeková; Annamária Jutková; Tibor Kožár; Jana Staničová;

Vibrational characterization of the pesticide molecule Tebuconazole

Abstract

Pesticide use worldwide exhibits a positive effect on agricultural production while it may negatively affect organisms living in soil, water or the air. Importantly, numerous negative health effects also occur in humans exposed to (accumulated) pesticides or their metabolites over a long period of time. To prevent both environmental catastrophes and adverse human health impacts, initial studies of the selected pesticides need to be performed together with the constant post-approval control; risk assessment analysis and on site monitoring have to be continuously carried out. Given this, Raman spectroscopy, especially surface-enhanced Raman spectroscopy (SERS), during the last decade has become a powerful analytical technique since it can offer quick, selective, and in situ detection of selected pollutants found in analyzed samples at very low concentrations. Moreover, the structural changes caused by the pollutant-biomacromolecule interaction can also be recognized in the molecule-specific Raman spectral signatures of biomolecules. In this study, we report a vibrational characterization of the fungicide molecule Tebuconazole (TB) which is listed to be a possible carcinogen. Even though its international and common use there is no evidence about the use of Raman/SERS spectroscopy to detect it sensitively and selectively as well as to analyse its impacts on biological systems. Therefore, we have recorded and calculated Raman and infrared spectra of TB. Furthermore, SERS spectra of TB were also registered and comprehensively analysed in view of the employed SERS substrates, dependence on the excitation wavelengths and pH of the analysed molecular systems. The molecule of TB interacts preferentially through the triazole moiety with the colloidal metal nanoparticles (NPs) whereas the silver NPs prepared by reduction of silver nitrate with hydroxylamine hydrochloride resulted to be the most effective ones. Consequently, the limit of detection was determined to be 1.4 μM≈430 ppb. The present paper thus could serve significantly for further investigations focused on both conducting vibrational analyses of structurally related molecules as well as providing a more precise explanation of the mechanism of action of TB and its influence on biological macromolecules.

Keywords

Humans, Metal Nanoparticles, Pesticides, Triazoles, Spectrum Analysis, Raman, Vibration

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    13
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
13
Top 10%
Average
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!