<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
pmid: 21330189
The purpose of this work is to determine the values of critical premicelle concentration (CPMC), first critical micelle concentration (FCMC) and second critical micelle concentration (SCMC) of surfactants using a common spectrofluorophotometer by recording resonance Rayleigh scattering (RRS) signal without any probe. The plot of the RRS intensities at the maximum scattering wavelength (I(RRS)(max)) versus surfactant concentrations (c) was constructed to obtain the I(RRS)(max)-c curve. From the inflexions in I(RRS)(max)-c curve, the CPMC, FCMC and SCMC values of a surfactant can be obtained sensitively. The FCMC of some anionic, cationic and nonionic surfactants such as sodium dodecyl sulfate (SDS), sodium dodecyl benzene sulfonate (SDBS), cetyltrimethylammonium bromide (CTAB), cetylpyridinium chloride (CPC), Tween-20, and Tween-80 were determined by RRS method and the values are in good agreement with those obtained from conductivity and surface tension measurements and literature values. The CPMC and SCMC of SDS and CTAB were also determined by RRS method respectively and the values conform to literature values too. Furthermore, RRS method can also be used to determine the FCMC of an amphiphilic macromolecule-hemoglobin, whose structure resembles a surfactant. From the experimental results, it is concluded that RRS method can be applied to the simultaneous determination of the CPMC, FCMC and SCMC values in a sensitive, accurate and no probe way.
Light, Cetrimonium, Spectrum Analysis, Electric Conductivity, Sodium Dodecyl Sulfate, Hydrogen-Ion Concentration, Hemoglobins, Surface-Active Agents, Molecular Probes, Cetrimonium Compounds, Scattering, Radiation, Micelles
Light, Cetrimonium, Spectrum Analysis, Electric Conductivity, Sodium Dodecyl Sulfate, Hydrogen-Ion Concentration, Hemoglobins, Surface-Active Agents, Molecular Probes, Cetrimonium Compounds, Scattering, Radiation, Micelles
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 125 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |