Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Spectrochimica Acta ...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Spectrochimica Acta Part A Molecular and Biomolecular Spectroscopy
Article . 2005 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Steric effect on fluorescence quenching

Authors: Suchandra, Chatterjee; Samita, Basu; Nandita, Ghosh; Manas, Chakrabarty;

Steric effect on fluorescence quenching

Abstract

In this communication we have reported the steric effect on the fluorescence quenching rate constants of the electron transfer (ET) process. We have done a comparative study using donor (D)-acceptor (A) systems with different exergonicity (-deltaG(f)). Different carbazole derivatives (CZ): 1,4-dicyanobenzene (DCB) systems (-deltaG(f) = 0.7-0.8 eV) were found to be among those limiting systems that show a clear-cut steric dominance in the process of fluorescence quenching. It is known that with increasing exergonicity the ET distance increases and hence steric dependence becomes insignificant. On the other hand, with decreasing exergonicity the ET distance decreases and a pronounced steric dominance should be observed. However, in the D-A systems having lower exergonicity compared to CZ-DCB systems, this steric dominance is observed only in polar medium. In non-polar medium due to exciplex formation the D-A distance effectively becomes much longer and therefore no steric dominance is observed.

Keywords

Electron Transport, Spectrometry, Fluorescence, Nitriles, Carbazoles, Fluorescence

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!