Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Results in Control a...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Results in Control and Optimization
Article . 2024 . Peer-reviewed
License: CC BY NC
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Mathematical modeling and strategy for optimal control of diphtheria

Authors: Hicham Gourram; Mohamed Baroudi; Issam Sahib; Abderrahim Labzai; Khalid Herradi; Mohamed Belam;

Mathematical modeling and strategy for optimal control of diphtheria

Abstract

This research introduces a novel approach to combating diphtheria by presenting a comprehensive optimal control strategy focused on awareness campaigns to avoid direct contact with infected individuals and promote vaccinations. These campaigns highlight the severe complications of diphtheria, such as acute respiratory issues, myocarditis, and neurological paralysis. Additionally, the campaigns emphasize the negative impacts of an unbalanced lifestyle and environmental factors, as well as the importance of timely treatment and psychological support. The model aims to improve control strategies by reducing the number of infected individuals I(t) and exposed individuals E(t), as well as asymptomatic carriers A(t), which we have integrated into the model as an aspect that has been relatively unexplored in diphtheria transmission. The optimal controls are meticulously determined using Pontryagin’s maximum principle. The resulting optimality system is solved iteratively, ensuring precision and clarity in the results. Extensive numerical simulations rigorously support and confirm the theoretical analysis using MATLAB, providing concrete evidence of the strategy’s effectiveness. The broader implications and potential applications of this optimal control strategy extend to other infectious diseases, enhancing its relevance and utility in public health.

Keywords

T57-57.97, Applied mathematics. Quantitative methods, Diphtheria, Spread of infectious diseases, Optimal control

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
gold