Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Resuscitationarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Resuscitation
Article . 2021 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

End-tidal carbon dioxide (ETCO2) and ventricular fibrillation amplitude spectral area (AMSA) for shock outcome prediction in out-of-hospital cardiac arrest. Are they two sides of the same coin?

Authors: Laura Frigerio; Enrico Baldi; Elisabete Aramendi; Beatriz Chicote; Unai Irusta; Enrico Contri; Alessandra Palo; +48 Authors

End-tidal carbon dioxide (ETCO2) and ventricular fibrillation amplitude spectral area (AMSA) for shock outcome prediction in out-of-hospital cardiac arrest. Are they two sides of the same coin?

Abstract

Ventricular fibrillation amplitude spectral area (AMSA) and end-tidal carbon dioxide (ETCO2) are predictors of shock success, understood as restoration of an organized rhythm, and return of spontaneous circulation (ROSC). However, little is known about their combined use. We aimed to assess the prediction accuracy when combined, and to clarify if they are correlated in out of hospital cardiac arrest' victims.Records acquired by external defibrillators in out-of-hospital cardiac arrest patients of the Lombardia Cardiac Arrest registry were processed. The 1-min pre-shock ETCO2 median value (METCO2) was computed from the capnogram and AMSA (2-48 mV.Hz range) computed applying the Fast Fourier Transform to a 2-second pre-shock filtered ECG interval (0.5-30 Hz). Support Vector Machine (SVM) predictive models based on METCO2, AMSA and their combination were fit; results were given as the area under the curve (AUC) of the receiver operating characteristic (ROC) curves.We considered 112 patients with 391 shocks delivered. METCO2 and AMSA were predictors of shock success [AUC (IQR) of the ROC curve: 0.59 (0.56-0.62); 0.68 (0.65-0.72), respectively] and of ROSC [0.56 (0.53-0.59); 0.74 (0.71-0.78),]. Their combination in a SVM model increased the accuracy for predicting shock success [AUC (IQR) of the ROC curve: 0.71 (0.68-0.75)] and ROSC [0.77 (0.73-0.8)]. AMSA and METCO2 were significantly correlated only in patients who achieved ROSC (rho = 0.33 p = 0.03).AMSA and ETCO2 predict shock success and ROSC after every shock, and their predictive power increases if combined. Notably, they were correlated only in patients who achieved ROSC.

Keywords

Amsacrine, Ventricular Fibrillation, Electric Countershock, Humans, Carbon Dioxide, Cardiopulmonary Resuscitation, Out-of-Hospital Cardiac Arrest

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    12
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
12
Top 10%
Average
Top 10%
Upload OA version
Are you the author? Do you have the OA version of this publication?