Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Resuscitationarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Resuscitation
Article . 2013 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Reliable extraction of the circulation component in the thoracic impedance measured by defibrillation pads

Authors: Unai Ayala; Digna M. González-Otero; Elisabete Aramendi; Jo Kramer-Johansen; Erik Alonso; Jesus Ruiz; Trygve Eftestøl;

Reliable extraction of the circulation component in the thoracic impedance measured by defibrillation pads

Abstract

To analyze the feasibility of extracting the circulation component from the thoracic impedance acquired by defibrillation pads. The impedance circulation component (ICC) would permit detection of pulse-generating rhythms (PRs) during the analysis intervals of an automated external defibrillator when a non-shockable rhythm with QRS complexes is detected.A dataset of 399 segments, 165 associated with PR and 234 with pulseless electrical activity (PEA) rhythms, was extracted from out-of-hospital cardiac arrest episodes by applying a conservative criterion. Records consisted of the electrocardiogram and the thoracic impedance signals free of artifacts due to thoracic compressions and ventilations. The impedance was processed using an adaptive scheme based on a least mean square algorithm to extract the ICC. Waveform features of the ICC signal and its first derivative were used to discriminate PR from PEA rhythms.The segments were split into development (83 PR and 117 PEA rhythms) and testing (82 PR and 117 PEA rhythms) subsets with a mean duration of 10.6s. Three waveform features, peak-to-peak amplitude, mean power, and mean area were defined for the ICC signal and its first derivative. The discriminative power in terms of area under the curve with the testing dataset was 0.968, 0.971, and 0.969, respectively, when applied to the ICC signal, and 0.974, 0.988 and 0.988, respectively, with its first derivative.A reliable method to extract the ICC of the thoracic impedance is feasible. Waveform features of the ICC or its first derivative show a high discriminative power to differentiate PR from PEA rhythms (area under the curve higher than 0.96 for any feature).

Keywords

Blood Circulation, Electric Impedance, Humans, Reproducibility of Results, Prospective Studies, Cardiopulmonary Resuscitation, Out-of-Hospital Cardiac Arrest, Defibrillators

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    24
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
24
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!