Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ TECNALIA Publication...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Reliability Engineering & System Safety
Article . 2016 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Synchronization of faulty processors in coarse-grained TMR protected partially reconfigurable FPGA designs

Authors: Kretzschmar, Uli; Gomez-Cornejo, Julen; Astarloa, Armando; Bidarte, Unai; Del Ser, Javier;

Synchronization of faulty processors in coarse-grained TMR protected partially reconfigurable FPGA designs

Abstract

Abstract The expansion of FPGA technology in numerous application fields is a fact. Single Event Effects (SEE) are a critical factor for the reliability of FPGA based systems. For this reason, a number of researches have been studying fault tolerance techniques to harden different elements of FPGA designs. Using Partial Reconfiguration (PR) in conjunction with Triple Modular Redundancy (TMR) is an emerging approach in recent publications dealing with the implementation of fault tolerant processors on SRAM-based FPGAs. While these works pay great attention to the repair of erroneous instances by means of reconfiguration, the essential step of synchronizing the repaired processors is insufficiently addressed. In this context, this paper poses four different synchronization approaches for soft core processors, which balance differently the trade-off between synchronization speed and hardware overhead. All approaches are assessed in practice by synchronizing TMR protected PicoBlaze processors implemented on a Virtex-5 FPGA. Nevertheless all methods are of a general nature and can be applied for different processor architectures in a straightforward fashion.

Country
Spain
Keywords

TMR, Synchronization, Reliability, Fault-recovery, Processor, FPGA

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    22
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
22
Top 10%
Top 10%
Top 10%
Green