<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
During pulseless electrical activity (PEA) the cardiac mechanical and electrical functions are dissociated, a phenomenon occurring in 25-42% of in-hospital cardiac arrest (IHCA) cases. Accurate evaluation of the likelihood of a PEA patient transitioning to return of spontaneous circulation (ROSC) may be vital for the successful resuscitation.We sought to develop a model to automatically discriminate between PEA rhythms with favorable and unfavorable evolution to ROSC.A dataset of 190 patients, 120 with ROSC, were acquired with defibrillators from different vendors in three hospitals. The ECG and the transthoracic impedance (TTI) signal were processed to compute 16 waveform features. Logistic regression models where designed integrating both automated features and characteristics annotated in the QRS to identify PEAs with better prognosis leading to ROSC. Cross validation techniques were applied, both patient-specific and stratified, to evaluate the performance of the algorithm.The best model consisted in a three feature algorithm that exhibited median (interquartile range) Area Under the Curve/Balanced accuracy/Sensitivity/Specificity of 80.3(9.9)/75.6(8.0)/ 77.4(15.2)/72.3(16.4) %, respectively.Information hidden in the waveforms of the ECG and TTI signals, along with QRS complex features, can predict the progression of PEA. Automated methods as the one proposed in this study, could contribute to assist in the targeted treatment of PEA in IHCA.
Pulseless electrical activity (PEA), Evolution prediction, RC581-951, VDP::Medisinske Fag: 700::Klinisk medisinske fag: 750, Clinical Paper, 610, hjertestans, Specialties of internal medicine, cardiac arrest, Machine Learning models, Cardiopulmonary resuscitation (CPR)
Pulseless electrical activity (PEA), Evolution prediction, RC581-951, VDP::Medisinske Fag: 700::Klinisk medisinske fag: 750, Clinical Paper, 610, hjertestans, Specialties of internal medicine, cardiac arrest, Machine Learning models, Cardiopulmonary resuscitation (CPR)
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |