
pmid: 15261335
The understanding of the apoptotic program has grown exponentially over the past decade. Numerous human diseases have been directly linked to genetic defects in the apoptotic pathways, including cancer, neurodegenerative disorders, and autoimmune diseases. Caspases initiate and amplify various death signals, allowing for selective and ordered cellular demolition. The fine balance between pro- and antiapoptotic Bcl-2 family members regulates the cell fate in response to many (but not all) stress or signaling pathways. Recent discoveries highlight the complex integration of signals from various organelles that determine cell fate and the multiple functions of central players in the apoptotic process. It is likely that the knowledge obtained in a relatively time will translate into better diagnostics and therapies to enhance or retard cell death in the appropriate clinical circumstances.
Caspases, Animals, Humans, Apoptosis, Signal Transduction
Caspases, Animals, Humans, Apoptosis, Signal Transduction
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 55 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
