Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Psychiatry Research ...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Psychiatry Research Neuroimaging
Article . 2006 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Preliminary findings of proton magnetic resonance spectroscopy in occipital cortex during sleep deprivation

Authors: Anna S, Urrila; Antti, Hakkarainen; Sami, Heikkinen; Outi, Huhdankoski; Tuomo, Kuusi; Dag, Stenberg; Anna-Maija, Häkkinen; +2 Authors

Preliminary findings of proton magnetic resonance spectroscopy in occipital cortex during sleep deprivation

Abstract

Proton magnetic resonance spectroscopy ((1)H MRS) has revealed biochemical alterations in various psychiatric disorders. Changes in brain metabolites may be caused not only by the disease's progression or response to treatment, but also by physiological variability. The aim of this study was to use (1)H MRS to assess the effects of specific short-term physiological states on major metabolites. Eight healthy women underwent (1)H MRS at the beginning and end of a 40-h period of sleep deprivation. The ratios of N-acetyl-aspartate (NAA), total creatine (tCr), and choline-containing compounds (Cho) to water (H(2)O) were determined from the occipital cortex during both baseline and photic stimulation conditions. During sleep deprivation, NAA/H(2)O decreased by 7% and Cho/H(2)O by 12%. Photic stimulation had no effect on the measured metabolites in the alert state, but in the sleep-deprived state the level of Cho/H(2)O increased during neuronal activation. The results suggest that NAA/H(2)O and Cho/H(2)O may depend on the state of alertness.

Keywords

Adult, Aspartic Acid, Magnetic Resonance Spectroscopy, Time Factors, Electroencephalography, Creatine, Choline, Humans, Sleep Deprivation, Female, Occipital Lobe, Protons, Wakefulness, Energy Metabolism, Photic Stimulation

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    12
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
12
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!