
pmid: 40016077
Accurately registering intraoral and cone beam computed tomography (CBCT) scans in patients with metal artifacts poses a significant challenge. Whether a cloud-based platform trained for artificial intelligence (AI)-driven segmentation can improve registration is unclear.The purpose of this clinical study was to validate a cloud-based platform trained for the AI-driven segmentation of prosthetic crowns on CBCT scans and subsequent multimodal intraoral scan-to-CBCT registration in the presence of high metal artifact expression.A dataset consisting of 30 time-matched maxillary and mandibular CBCT and intraoral scans, each containing at least 4 prosthetic crowns, was collected. CBCT acquisition involved placing cotton rolls between the cheeks and teeth to facilitate soft tissue delineation. Segmentation and registration were compared using either a semi-automated (SA) method or an AI-automated (AA). SA served as clinical reference, where prosthetic crowns and their radicular parts (natural roots or implants) were threshold-based segmented with point surface-based registration. The AA method included fully automated segmentation and registration based on AI algorithms. Quantitative assessment compared AA's median surface deviation (MSD) and root mean square (RMS) in crown segmentation and subsequent intraoral scan-to-CBCT registration with those of SA. Additionally, segmented crown STL files were voxel-wise analyzed for comparison between AA and SA. A qualitative assessment of AA-based crown segmentation evaluated the need for refinement, while the AA-based registration assessment scrutinized the alignment of the registered-intraoral scan with the CBCT teeth and soft tissue contours. Ultimately, the study compared the time efficiency and consistency of both methods. Quantitative outcomes were analyzed with the Kruskal-Wallis, Mann-Whitney, and Student t tests, and qualitative outcomes with the Wilcoxon test (all α=.05). Consistency was evaluated by using the intraclass correlation coefficient (ICC).Quantitatively, AA methods excelled with a 0.91 Dice Similarity Coefficient for crown segmentation and an MSD of 0.03 ±0.05 mm for intraoral scan-to-CBCT registration. Additionally, AA achieved 91% clinically acceptable matches of teeth and gingiva on CBCT scans, surpassing SA method's 80%. Furthermore, AA was significantly faster than SA (P<.05), being 200 times faster in segmentation and 4.5 times faster in registration. Both AA and SA exhibited excellent consistency in segmentation and registration, with ICC values of 0.99 and 1 for AA and 0.99 and 0.96 for SA, respectively.The novel cloud-based platform demonstrated accurate, consistent, and time-efficient prosthetic crown segmentation, as well as intraoral scan-to-CBCT registration in scenarios with high artifact expression.
BEAM COMPUTED-TOMOGRAPHY, Science & Technology, SURFACE, Crowns, ACCURACY, 1105 Dentistry, Cone-Beam Computed Tomography, GUIDED IMPLANT-SURGERY, 0903 Biomedical Engineering, 3203 Dentistry, TISSUE, Artificial Intelligence, Dentistry, Dentistry, Oral Surgery & Medicine, Image Processing, Computer-Assisted, Humans, Artifacts, Life Sciences & Biomedicine, Algorithms, 4003 Biomedical engineering
BEAM COMPUTED-TOMOGRAPHY, Science & Technology, SURFACE, Crowns, ACCURACY, 1105 Dentistry, Cone-Beam Computed Tomography, GUIDED IMPLANT-SURGERY, 0903 Biomedical Engineering, 3203 Dentistry, TISSUE, Artificial Intelligence, Dentistry, Dentistry, Oral Surgery & Medicine, Image Processing, Computer-Assisted, Humans, Artifacts, Life Sciences & Biomedicine, Algorithms, 4003 Biomedical engineering
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 3 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
