Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Procedia Computer Sc...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Procedia Computer Science
Article . 2021 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Procedia Computer Science
Article
License: CC BY NC ND
Data sources: UnpayWall
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

pyEDA: An Open-Source Python Toolkit for Pre-processing and Feature Extraction of Electrodermal Activity

Authors: Seyed Amir Hossein Aqajari; Emad Kasaeyan Naeini; Milad Asgari Mehrabadi; Sina Labbaf; Nikil Dutt; Amir M. Rahmani;

pyEDA: An Open-Source Python Toolkit for Pre-processing and Feature Extraction of Electrodermal Activity

Abstract

Abstract Physiological response is an automatic reaction that triggers a physical response to a stimulus such as stress, emotion, pain, etc. Examples include changes in heart rate, respiration, perspiration, and eye pupil dilation. Electrodermal Activity (EDA), also known as Galvanic Skin Response (GSR), measures changes in perspiration by detecting the changes in electrical conductivity of skin. Previous studies have already shown that EDA is one of the leading indicators for a stimulus. However, the EDA signal itself is not trivial to analyze. To detect different stimuli in human subjects, variety of features are extracted from EDA signals such as the number of peaks, max peak amplitude, to name a few, showing the prevalence of this signal in bio-medical as well as ubiquitous and wearable computing research. In this paper, we present an open-source Python toolkit for EDA signal preprocessing and statistical and automatic feature extraction. To the best of our knowledge, this is the first effort for developing a versatile and generic tool to extract any number of automatic features from EDA signals. We evaluate our toolkit using different machine learning algorithms applied to the Wearable Stress and Affect Detection (WESAD) dataset. Our results show higher validation accuracy for a stress detection task using the the features automatically extracted by pyEDA.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    42
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
42
Top 10%
Top 10%
Top 1%
gold