
AbstractDissolution extraction of uranium oxides, CeO2 and (U, Ce)O2 solid solution with TBP-HNO3 complex in supercritical CO2 (SC-CO2) was investigated. It is difficult to dissolve and extract directly UO2 pellets and CeO2 with TBP-HNO3 complex in SC-CO2. After UO2 pellets spontaneously turns into U3O8 powders under O2 flow and 600°C, the extraction efficiency can reach more than 98%. For dissolution extraction of (U, Ce)O2 solid solution with TBP-HNO3 complex in SC-CO2 under 60 and 20MPa, the extraction efficiency of U and Ce is 98.61% and 98.1% respectively.
Chemistry(all), TBP-HNO3 complex, Chemical Engineering(all), Cerium oxide, Supercritical CO2, Dissolution extraction, Uranium oxide
Chemistry(all), TBP-HNO3 complex, Chemical Engineering(all), Cerium oxide, Supercritical CO2, Dissolution extraction, Uranium oxide
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 7 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
