Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Polymerarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Polymer
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Polymer
Article . 2016 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Preparation of ZnO hybrid nanoparticles by ATRP

Authors: Hangjun Ding; Jiajun Yan; Zongyu Wang; Guojun Xie; Clare Mahoney; Rachel Ferebee; Mingjiang Zhong; +6 Authors

Preparation of ZnO hybrid nanoparticles by ATRP

Abstract

Abstract Zinc oxide (ZnO) is a wide bandgap semiconductor material that has attracted widespread interest as particle filler in polymer nanocomposite materials. However, its applications have been hindered by the limited dispersibility and surface-modification techniques. Herein, three distinct approaches for the synthesis of polymer-tethered ZnO hybrid materials are compared in terms of uniformity and yield of the particle-brush product: “grafting-from”, “grafting-onto”, and “grafted-copolymer template” methods. In the “grafting-from” method, pristine ZnO nanoparticles (NP) were first functionalized with atom transfer radical polymerization (ATRP) initiators followed by grafting-from process to form poly(methyl methacrylate) (PMMA) or poly(styrene-co-acrylonitrile) (PSAN) tethered polymer chains. In the “grafting-onto” method, PMMA-b-PAA (poly[acrylic acid]) and PSAN-b-PAA diblock copolymers were prepared and attached onto the surface of ZnO NPs using sonication bath. For the “grafted-copolymer template” method, PSAN-b-PtBA-Br (poly[tert-butyl acrylate]-Br) macroinitiators were crosslinked with divinylbenzene (DVB) to form PSAN-b-PtBA-PDVB core-shell star polymers. After hydrolysis to form PSAN-b-PAA-PDVB star polymers, the functional stars were used as polymer templates for the synthesis of ZnO NPs within the PAA-core of the stars. Core-shell molecular bottlebrushes with PAA-b-PS block-copolymer side chains were also used as anisotropic analogues of star template to prepared worm-like ZnO particles. Several ZnO precursors, zinc nitrite, zinc 2-ethylhexanoate, and zinc acetate were evaluated as precursors of ZnO. Conditions were identified that enable the synthesis of polymer-tethered ZnO with excellent size uniformity and dispersion characteristics using the star-template method.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    30
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
30
Top 10%
Average
Top 10%
hybrid