Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Polymerarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Polymer
Article . 2004 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Chitin and chitosan nanofibers: electrospinning of chitin and deacetylation of chitin nanofibers

Authors: Byung-Moo Min; Sung Won Lee; Jung Nam Lim; Young You; Taek Seung Lee; Pil Hyun Kang; Won Ho Park;

Chitin and chitosan nanofibers: electrospinning of chitin and deacetylation of chitin nanofibers

Abstract

Abstract An electrospinning method was used to fabricate chitin nanofibous matrix for wound dressings. Chitin was depolymerized by gamma irradiation to improve its solubility. The electrospinning of chitin was performed with 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) as a spinning solvent. Morphology of as-spun and deacetylated chitin (chitosan) nanofibers was investigated by scanning electron microscopy. Although as-spun chitin nanofibers had the broad fiber diameter distribution, most of the fiber diameters are less than 100 nm. From the image analysis, they had an average diameter of 110 nm and their diameters ranged from 40 to 640 nm. For deacetylation, as-spun chitin nanofibous matrix was chemically treated with a 40% aqueous NaOH solution at 60 or 100 °C. With the deacetylation for 150 min at 100 °C or for 1day at 60 °C, chitin matrix was transformed into chitosan matrix with degree of deacetylation (DD) ∼85% without dimensional change (shrinkage). This structural transformation from chitin to chitosan was confirmed by FT-IR and WAXD.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    378
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
378
Top 1%
Top 1%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!