
pmid: 28089695
The mechanism of tacrine as a precognitive drug has been considered to be complex and not fully understood. It has been reported to involve a wide spectrum of targets involving cholinergic, gabaergic, nitrinergic and glutamatergic pathways. Here, we review the effect of tacrine and its derivatives on the NMDA receptors (NMDAR) with a focus on the mechanism of action and biological consequences related to the Alzheimer's disease treatment. Our findings indicate that effect of tacrine on glutamatergic neurons is both direct and indirect. Direct NMDAR antagonistic effect is often reported by in vitro studies; however, it is achieved by high tacrine concentrations which are not likely to occur under clinical conditions. The impact on memory and behavioral testing can be ascribed to indirect effects of tacrine caused by influencing the NMDAR-mediated currents via M1 receptor activation, which leads to inhibition of Ca2+-activated potassium channels. Such inhibition prevents membrane repolarization leading to prolonged NMDAR activation and subsequently to long term potentiation. Considering these findings, we can conclude that tacrine-derivatives with dual cholinesterase and NMDARs modulating activity may represent a promising approach in the drug development for diseases associated with cognitive dysfunction, such as the Alzheimer disease.
Models, Molecular, Neurons, Tacrine, Animals, Humans, Cholinesterase Inhibitors, Receptors, N-Methyl-D-Aspartate, Membrane Potentials
Models, Molecular, Neurons, Tacrine, Animals, Humans, Cholinesterase Inhibitors, Receptors, N-Methyl-D-Aspartate, Membrane Potentials
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 58 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
