Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Progress in Neurobio...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Progress in Neurobiology
Article . 2019 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The senses of the choroid plexus

Authors: Telma Quintela; Joana Tomás; Cecília R.A. Santos; Ana R. Costa; I. Gonçalves; Ana Catarina Duarte;

The senses of the choroid plexus

Abstract

The composition of cerebrospinal and brain interstitial fluids is ensured by barriers between the blood and the brain parenchyma (the blood-brain barrier) and between the blood and the cerebrospinal fluid (the blood-cerebrospinal fluid barrier). Barrier function results from the combination of tight junctions between cells that impair solute flux via the paracellular pathway, cell membrane transporters that enable selective transcellular solute passage, and intracellular metabolizing enzymes that transform molecules in transit. Collectively, they comprise a chemical surveillance system, essential to protect the brain from toxicants, microorganisms, and other harmful compounds. Conversely, this chemical surveillance system compromises the brain delivery of many pharmacologic agents against brain cancer and brain metastasis, neurodegenerative diseases, and brain infections. Despite their importance, the mechanisms underlying the regulation of the components of this chemical surveillance system in response to alterations in the composition of blood and brain fluids are still poorly understood. We propose that odorant receptors, vomeronasal receptors and taste receptors, recently identified at brain barriers might be upstream components of this surveillance system. These chemosensory receptors are strategically placed to monitor the composition of blood, cerebrospinal and brain interstitial fluids. Upon ligand-binding, they may deploy the action of transporters and detoxifying enzymes or other unprecedented functions in brain barrier cells, to cope with alterations in the composition of blood and brain cerebrospinal and interstitial fluids, working as guardians of the central nervous system.

Related Organizations
Keywords

Neurons, Blood-Brain Barrier, Choroid Plexus, Animals, Brain, Humans, Cerebrospinal Fluid, Tight Junctions

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    22
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
22
Top 10%
Average
Top 10%
Upload OA version
Are you the author? Do you have the OA version of this publication?