Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Pervasive and Mobile...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Pervasive and Mobile Computing
Article . 2017 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
https://doi.org/10.1109/percom...
Article . 2016 . Peer-reviewed
Data sources: Crossref
https://dx.doi.org/10.13016/m2...
Other literature type . 2016
Data sources: Datacite
DBLP
Article
Data sources: DBLP
DBLP
Conference object
Data sources: DBLP
versions View all 5 versions
addClaim

Active learning enabled activity recognition

Authors: H. M. Sajjad Hossain; Nirmalya Roy; Md Abdullah Al Hafiz Khan;

Active learning enabled activity recognition

Abstract

Activity recognition in smart environment has been investigated rigorously in recent years. Researchers are enhancing the underlying activity discovery and recognition process by adding various dimensions and functionalities. But one significant barrier still persists which is collecting the ground truth information. Ground truth is very important to initialize a supervised learning of activities. Due to a large variety in number of Activities of Daily Living (ADLs), acknowledging them in a supervised way is a non-trivial research problem. Most of the previous researches have referenced a subset of ADLs and to initialize their model, they acquire a vast amount of informative labeled training data. On the other hand to collect ground truth and differentiate ADLs, human intervention is indispensable. As a result it takes an immense effort and raises privacy concerns to collect a reasonable amount of labeled data. In this paper, we propose to use active learning to alleviate the labeling effort and ground truth data collection in activity recognition pipeline. We investigate and analyze different active learning strategies to scale activity recognition and propose a dynamic k-means clustering based active learning approach. Experimental results on real data traces from a retirement community-(IRB #HP-00064387) help validate the early promise of our approach.

© 2016 IEEE, 2016 IEEE International Conference on Pervasive Computing and Communications (PerCom)

Keywords

Labeling, Smart homes, Uncertainty, Data models, Crowdsourcing, Wearable sensors, Adaptation models, Mobile Pervasive & Sensor Computing Lab

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    90
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
90
Top 1%
Top 10%
Top 10%
bronze