Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Phytochemistryarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Phytochemistry
Article . 2020 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Sites of biosynthesis and storage of Taxol in Taxus media (Rehder) plants: Mechanism of accumulation

Authors: Sameh S. M. Soliman; Sameh S. M. Soliman; Manish N. Raizada;

Sites of biosynthesis and storage of Taxol in Taxus media (Rehder) plants: Mechanism of accumulation

Abstract

Taxol is a cytotoxic agent against various types of cancers. The cytotoxic activities of Taxol can be extended to its synthesizing plant. Here, Taxol is shown to have special synthesis, storage and transport mechanisms that avoid the toxic effects on its source plant. The sites of Taxol biosynthesis, transport and storage were revealed by quantification of plant Taxol, its intermediate baccatin III, the polyphenol side chain precursor , gene expression analysis of the major Taxol biosynthetic genes and in situ immuno-labeling. Although the biosynthesis of Taxol was limited by the expression of its biosynthetic genes and the presence of baccatin III, its presence did not correlate to baccatin III accumulation, nor to the expression of biosynthetic genes. However, Taxol presence positively correlated to polyphenol accumulation (late stage in Taxol assembly) and the resin-like hydrophobic bodies (HB, storage organelles). These results indicate that the presence of Taxol requires two complementary steps, biosynthesis followed by storage. Each step is limited by the availability of different precursors, which differ in their localization within the plant. Thus, the sites of biosynthesis, transport and storage of Taxol are different. Taxus media (Rehder) plant wood showed high concentrations of baccatin III and the expression of biosynthetic genes. However, the concentrations of Taxol, polyphenol and HB were very high in the plant outer layers including phloem and dead bark (rhytidome). Furthermore, in situ immuno-labeling showed that taxadiene synthase (the rate-limiting enzyme in Taxol biosynthesis) was mainly found in the wood, while Taxol primarily localized to the outer tissues. Conclusively, wood can be considered as the site of Taxol biosynthesis. Our data also propose that Taxol then accumulates into HB in order to permit its transport within the living plant tissues without causing toxic effects. This is followed by Taxol storage in the outer tissues including phloem and dead bark.

Related Organizations
Keywords

Paclitaxel, Antineoplastic Agents, Taxus

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    18
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 8
  • 8
    views
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
18
Top 10%
Average
Top 10%
8
Related to Research communities
Cancer Research
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!