Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Physics Reportsarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Physics Reports
Article
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Physics Reports
Article . 2019 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2018
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Ultra-high-energy cosmic rays

Authors: Anchordoqui, Luis A.;

Ultra-high-energy cosmic rays

Abstract

In this report we review the important progress made in recent years towards understanding the experimental data on ultra-high-energy ($E \gtrsim 10^9$ GeV) cosmic rays. We begin with a general survey of the available data, including a description of the energy spectrum, the nuclear composition, and the distribution of arrival directions. At this point we also give a synopsis of experimental techniques. After that, we introduce the fundamentals of cosmic ray acceleration and energy loss during propagation, with a view of discussing the conjectured nearby sources. Next, we survey the state of the art regarding the high- and ultra-high-energy cosmic neutrinos which may be produced in association with the observed cosmic rays. These neutrinos could constitute key messengers identifying currently unknown cosmic accelerators, possibly in the distant universe, because their propagation is not influenced by background photon or magnetic fields. Subsequently, we summarize the phenomenology of cosmic ray air showers. We describe the hadronic interaction models used to extrapolate results from collider data to ultra-high energies and the main electromagnetic processes that govern the longitudinal shower evolution. Armed with these two principal shower ingredients and motivation from the underlying physics, we describe the different methods proposed to distinguish the primary particle species. In the end, we explore how ultra-high-energy cosmic rays can be used as probes of beyond standard model physics models.

Matching version accepted for publication in Physics Reports. This article builds upon the content of arXiv:hep-ph/0206072, arXiv:astro-ph/0402371, arXiv:hep-ph/0407020, arXiv:1104.0509, arXiv:1307.5312, arXiv:1505.02153, arXiv:1709.07321, arXiv:1801.06160, and arXiv:1801.07170

Keywords

High Energy Astrophysical Phenomena (astro-ph.HE), High Energy Physics - Phenomenology, High Energy Physics - Phenomenology (hep-ph), FOS: Physical sciences, Astrophysics - High Energy Astrophysical Phenomena

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    143
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
143
Top 1%
Top 10%
Top 1%
Green
bronze