
arXiv: 1409.1528
We study a dynamical mechanism that generates a composite vectorlike fermion, formed by the binding of an $N$-tuplet of elementary chiral fermions to an $N$-tuplet of scalars. Deriving the properties of the composite fermion in the large $N$ limit, we show that its mass is much smaller than the compositeness scale when the binding coupling is near a critical value. We compute the contact interactions involving four composite fermions, and find that their coefficients scale as $1/N$. Physics beyond the Standard Model may include composite vectorlike fermions arising from this mechanism.
6 pages, 3 figures
High Energy Physics - Theory, Nuclear and High Energy Physics, High Energy Physics - Phenomenology, High Energy Physics - Phenomenology (hep-ph), High Energy Physics - Theory (hep-th), Physics, QC1-999, FOS: Physical sciences
High Energy Physics - Theory, Nuclear and High Energy Physics, High Energy Physics - Phenomenology, High Energy Physics - Phenomenology (hep-ph), High Energy Physics - Theory (hep-th), Physics, QC1-999, FOS: Physical sciences
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 2 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
