<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
We consider the recently suggested model for some resonances near the open charm threshold as bound states of charmonium inside excited light mesons. It is argued in the soft-wall holographic model of QCD that such states of heavy quarkonium necessarily exist at sufficiently large spin of the light meson. The bound state is provided by the dilaton exchange through the 5D bulk. We also argue that the decay of such bound systems into mesons with open heavy flavors due to splitting of the heavy quarkonium can be treated as semiclassical tunneling and is suppressed. This behavior is in agreement with the known relative suppression of the decay of the discussed charmonium-like resonances into channels with D mesons.
11 pages, 1 figure
High Energy Physics - Theory, Nuclear and High Energy Physics, High Energy Physics - Phenomenology, High Energy Physics - Phenomenology (hep-ph), High Energy Physics - Theory (hep-th), FOS: Physical sciences
High Energy Physics - Theory, Nuclear and High Energy Physics, High Energy Physics - Phenomenology, High Energy Physics - Phenomenology (hep-ph), High Energy Physics - Theory (hep-th), FOS: Physical sciences
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 16 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |