<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Understanding decoherence processes is crucial in the study of open quantum systems. In this paper, we discuss the mechanism of pure-dephasing process with a newly proposed boson-boson model, namely, a bosonic field coupled to another bosonic bath in thermal equilibrium. Our model is fully solvable and can reproduce the pure-dephasing process which is usually described by the well-known spin-boson model, therefore offering a new perspective to understanding decoherence processes in open quantum systems of high dimension. We also show that this model admits a generically non-Markovian dynamics with respect to various different non-Markovian measures.
8 pages, 8 figures
Quantum Physics, FOS: Physical sciences, Quantum Physics (quant-ph)
Quantum Physics, FOS: Physical sciences, Quantum Physics (quant-ph)
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 3 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |