
arXiv: 1711.02608
Huge volumes of textual information has been produced every single day. In order to organize and understand such large datasets, in recent years, summarization techniques have become popular. These techniques aims at finding relevant, concise and non-redundant content from such a big data. While network methods have been adopted to model texts in some scenarios, a systematic evaluation of multilayer network models in the multi-document summarization task has been limited to a few studies. Here, we evaluate the performance of a multilayer-based method to select the most relevant sentences in the context of an extractive multi document summarization (MDS) task. In the adopted model, nodes represent sentences and edges are created based on the number of shared words between sentences. Differently from previous studies in multi-document summarization, we make a distinction between edges linking sentences from different documents (inter-layer) and those connecting sentences from the same document (intra-layer). As a proof of principle, our results reveal that such a discrimination between intra- and inter-layer in a multilayered representation is able to improve the quality of the generated summaries. This piece of information could be used to improve current statistical methods and related textual models.
FOS: Computer and information sciences, Computer Science - Computation and Language, Computation and Language (cs.CL)
FOS: Computer and information sciences, Computer Science - Computation and Language, Computation and Language (cs.CL)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 55 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
