
Pharmacological regulation of gene expression was one of the top professional interests of Dr. Costa. He promoted the idea that drugs can improve the endogenous mechanisms of synaptic plasticity by modulating gene expression. In this article I reflect upon Dr. Costa's leadership in projects undertaken at FGIN that were aimed at elucidating how neurotransmitter receptor activation could affect brain function by modulating genes and their products. I will be presenting examples of how pharmacological tools can change gene expression. These include the ability of drugs of abuse to alter the synthesis of opioid peptides or an endogenous ligand for GABAA receptor. I will conclude with a brief summary of intriguing discoveries about the regulation of nerve growth factor (NGF) and its receptors by beta-receptor agonists, adrenal steroids and cytokines.
Illicit Drugs, Adrenergic beta-Agonists, Neuropharmacology, Gene Expression Regulation, Opioid Peptides, Nerve Growth Factor, Animals, Cytokines, Humans, Glucocorticoids
Illicit Drugs, Adrenergic beta-Agonists, Neuropharmacology, Gene Expression Regulation, Opioid Peptides, Nerve Growth Factor, Animals, Cytokines, Humans, Glucocorticoids
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
