
handle: 11693/49552
We report that it is possible to obtain a cavity structure by the deformation of a unit cell of an split ring resonator (SRR) structure. We presented the Q-factor of the cavity resonance as 192 for an SRR-based single cavity. Subsequently, we brought two and three cavities together with an intercavity distance of two metamaterial unit cells and investigated the transmission spectrum of SRRbased interacting 2-cavity and 3-cavity systems. The splitting of eigenmodes due to the interaction between the localized electromagnetic cavity modes was observed. Eventually, in taking full advantage of the effective medium theory, we modeled SRRbased cavities as 1D Fabry–Perot reflectors (FPRs) with a subwavelength cavity at the center. Finally, we observed that at the cavity resonance, the effective group velocity was reduced by a factor of 67 for an SRR-based single cavity compared to the electromagnetic waves propagating in free space. # 2008 Elsevier B.V. All rights reserved.
Cavity, Metamaterials, Split rind resonator
Cavity, Metamaterials, Split rind resonator
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
