Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Current Opinion in P...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Current Opinion in Plant Biology
Article . 2011 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

Plants grow on brassinosteroids

Authors: Gustavo E, Gudesblat; Eugenia, Russinova;

Plants grow on brassinosteroids

Abstract

Brassinosteroids (BRs) are plant steroid hormones known mainly for promoting organ growth through their combined effect on cell expansion and division. In addition, BRs regulate a broad spectrum of plant developmental and physiological responses, including plant architecture, vascular differentiation, male fertility, flowering, senescence, photomorphogenesis and tolerance to biotic and abiotic stresses. Recently, a complete core BR signaling pathway was defined in which BR signals are conveyed from the cell surface to the nucleus through sequential signaling modules. A major challenge now is to understand precisely how this signaling pathway controls the different BR-regulated actions. The current identification of direct targets of BRASSINAZOLE-RESISTANT1 (BRZ1) and BR-INSENSITIVE-EMS-SUPPRESSOR1 (BES1)/BZR2 transcription factors suggests that BR signaling pathway controls growth and interacts with other signaling pathways mainly at the transcriptional level.

Keywords

DNA-Binding Proteins, Plant Growth Regulators, Arabidopsis Proteins, Brassinosteroids, Nuclear Proteins, Plant Development, Plants, Signal Transduction, Transcription Factors

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    156
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
156
Top 1%
Top 10%
Top 1%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!