<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
pmid: 15134755
Various lipids are involved in mediating plant growth, development and responses to biotic and abiotic cues, and their production is regulated by lipid-signaling enzymes. Lipid-hydrolyzing enzymes play a pivotal role both in the production of lipid messengers and in other processes, such as cytoskeletal rearrangement, membrane trafficking, and degradation. Studies on the downstream targets and modes of action of lipid signals in plants are still in their early stages but distinguishing features of plant lipid-based signaling are being recognized. Phospholipase D enzymes and phosphatidic acid may play a broader role in lipid signaling in plants than in other systems.
Diacylglycerol Kinase, Arabidopsis, Phosphatidic Acids, Fatty Acids, Nonesterified, Plants, Lipid Metabolism, Phospholipases A, Type C Phospholipases, Phospholipase D, Lysophospholipids, Signal Transduction
Diacylglycerol Kinase, Arabidopsis, Phosphatidic Acids, Fatty Acids, Nonesterified, Plants, Lipid Metabolism, Phospholipases A, Type C Phospholipases, Phospholipase D, Lysophospholipids, Signal Transduction
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 352 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |