
In this paper, we introduce a new Random Forest (RF) induction algorithm called Dynamic Random Forest (DRF) which is based on an adaptative tree induction procedure. The main idea is to guide the tree induction so that each tree will complement as much as possible the existing trees in the ensemble. This is done here through a resampling of the training data, inspired by boosting algorithms, and combined with other randomization processes used in traditional RF methods. The DRF algorithm shows a significant improvement in terms of accuracy compared to the standard static RF induction algorithm.
[INFO.INFO-TT]Computer Science [cs]/Document and Text Processing, Ensemble of classifiers, [INFO.INFO-TT] Computer Science [cs]/Document and Text Processing, Random forests, Random feature selection, Dynamic induction
[INFO.INFO-TT]Computer Science [cs]/Document and Text Processing, Ensemble of classifiers, [INFO.INFO-TT] Computer Science [cs]/Document and Text Processing, Random forests, Random feature selection, Dynamic induction
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 99 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
