
Feature extraction is one of the key steps in object recognition. In this paper we propose a novel genetically inspired learning method for facial expression recognition (FER). Unlike current research on facial expression recognition that generally selects visually meaningful feature by hands, our learning method can discover the features automatically in a genetic programming-based approach that uses Gabor wavelet representation for primitive features and linear/nonlinear operators to synthesize new features. These new features are used to train a support vector machine classifier that is used for recognizing the facial expressions. The learned operator and classifier are used on unseen testing images. To make use of random nature of a genetic program, we design a multi-agent scheme to boost the performance. We compare the performance of our approach with several approaches in the literature and show that our approach can perform the task of facial expression recognition effectively.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 59 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
