
Diffusion-based models have demonstrated remarkable effectiveness in image restoration tasks; however, their iterative denoising process, which starts from Gaussian noise, often leads to slow inference speeds. The Image-to-Image Schrödinger Bridge (I$^2$SB) offers a promising alternative by initializing the generative process from corrupted images while leveraging training techniques from score-based diffusion models. In this paper, we introduce the Implicit Image-to-Image Schrödinger Bridge (I$^3$SB) to further accelerate the generative process of I$^2$SB. I$^3$SB restructures the generative process into a non-Markovian framework by incorporating the initial corrupted image at each generative step, effectively preserving and utilizing its information. To enable direct use of pretrained I$^2$SB models without additional training, we ensure consistency in marginal distributions. Extensive experiments across many image corruptions, including noise, low resolution, JPEG compression, and sparse sampling, and multiple image modalities, such as natural, human face, and medical images, demonstrate the acceleration benefits of I$^3$SB. Compared to I$^2$SB, I$^3$SB achieves the same perceptual quality with fewer generative steps, while maintaining or improving fidelity to the ground truth.
27 pages, 8 figures, accepted by Pattern Recognition
FOS: Computer and information sciences, Computer Science - Machine Learning, Computer Vision and Pattern Recognition (cs.CV), Image and Video Processing (eess.IV), Computer Science - Computer Vision and Pattern Recognition, FOS: Electrical engineering, electronic engineering, information engineering, Electrical Engineering and Systems Science - Image and Video Processing, Machine Learning (cs.LG)
FOS: Computer and information sciences, Computer Science - Machine Learning, Computer Vision and Pattern Recognition (cs.CV), Image and Video Processing (eess.IV), Computer Science - Computer Vision and Pattern Recognition, FOS: Electrical engineering, electronic engineering, information engineering, Electrical Engineering and Systems Science - Image and Video Processing, Machine Learning (cs.LG)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 2 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
