<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
handle: 20.500.11824/1461
This work addresses time series classifier recommendation for the first time in the literature by considering several recommendation forms or meta-targets: classifier accuracies, complete ranking, top-M ranking, best set and best classifier. For this, an ad-hoc set of quick estimators of the accuracies of the candidate classifiers (landmarkers) are designed, which are used as predictors for the recommendation system. The performance of our recommender is compared with the performance of a standard method for non-sequential data and a set of baseline methods, which our method outperforms in 7 of the 9 considered scenarios. Since some meta-targets can be inferred from the predictions of other more fine-grained meta-targets, the last part of the work addresses the hierarchical inference of meta-targets. The experimentation suggests that, in many cases, a single model is sufficient to output many types of meta-targets with competitive results.
metatargets, meta-learning, time series classification, time series classification; meta-learning; landmarkers; hierarchical inference; metatargets, hierarchical inference, landmarkers
metatargets, meta-learning, time series classification, time series classification; meta-learning; landmarkers; hierarchical inference; metatargets, hierarchical inference, landmarkers
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 9 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |