Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Pattern Recognitionarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Pattern Recognition
Article . 2009 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A stochastic graph grammar for compositional object representation and recognition

Authors: Zijian Xu; Liang Lin; Jake Porway; Tianfu Wu;

A stochastic graph grammar for compositional object representation and recognition

Abstract

This paper illustrates a hierarchical generative model for representing and recognizing compositional object categories with large intra-category variance. In this model, objects are broken into their constituent parts and the variability of configurations and relationships between these parts are modeled by stochastic attribute graph grammars, which are embedded in an And-Or graph for each compositional object category. It combines the power of a stochastic context free grammar (SCFG) to express the variability of part configurations, and a Markov random field (MRF) to represent the pictorial spatial relationships between these parts. As a generative model, different object instances of a category can be realized as a traversal through the And-Or graph to arrive at a valid configuration (like a valid sentence in language, by analogy). The inference/recognition procedure is intimately tied to the structure of the model and follows a probabilistic formulation consisting of bottom-up detection steps for the parts, which in turn recursively activate the grammar rules for top-down verification and searches for missing parts. We present experiments comparing our results to state of art methods and demonstrate the potential of our proposed framework on compositional objects with cluttered backgrounds using training and testing data from the public Lotus Hill and Caltech datasets.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    112
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
112
Top 10%
Top 1%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!