Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Pathologie Biologiearrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Pathologie Biologie
Article . 2015 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

PKCs in thrombus formation

Authors: Kevin Kojok; Younes Zaid; C. Fadainia; Nezha Senhaji; Abdallah Naya;

PKCs in thrombus formation

Abstract

The protein kinase C (PKC) family has been implicated in several physiological processes regulating platelet activation. Each isoform of PKC expressed on platelets, may have a positive and/or negative role depending on the nature and concentration of the agonist. Mice lacking PKCα show much reduced thrombus formation in vivo, while PKCθ(-/-) showed inhibition of aggregation in response to PAR4. On the other hand, PKCδ by associating with Fyn, inhibits platelet aggregation. In addition, PKCβ by interacting with its receptor RACK1 has been implicated in the primary phases of signaling via the αIIbβ3 and finally PKCɛ appears to be involved in platelet function downstream GPVI. The present review discusses the latest observations relevant to the role of individual PKC isoforms in platelet activation and thrombus formation.

Keywords

Isoenzymes, Mice, Knockout, Mice, Platelet Aggregation, Animals, Humans, Thrombosis, Platelet Activation, Protein Kinase C

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    6
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
6
Average
Average
Average
Upload OA version
Are you the author? Do you have the OA version of this publication?