Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Pathologie Biologiearrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Pathologie Biologie
Article . 2004 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Immortalization of hepatic progenitor cells

Authors: Anne, Weber;

Immortalization of hepatic progenitor cells

Abstract

Development of cell therapy-based strategies for the treatment of liver failures and of inherited metabolic diseases has become a necessity because of the limitations of orthotopic liver transplantation, including shortage of donor livers. This shortage limits also the availability for hepatocytes and these terminally differentiated cells cannot be expanded in vitro. Thus, other alternative sources of hepatocytes have to be explored such as hepatic stem cells. Foetal hepatic cells have specific intrinsic properties compared to adult hepatocytes that should overcome some of their limitations. Thus, the availability of in vitro expandable progenitor cells by means of immortalization and without inducing a transformed phenotype and disrupting their differentiation potential would facilitate studies on cell engraftment and differentiation within the hepatic parenchyma. A temporally controlled expression of the immortalizing transgene would also permit to revert the immortalized phenotype prior to cell transplantation. Since characteristics of murine stem cells cannot readily be extrapolated to their human or other primate counterparts, we have immortalized one clone of primate hepatic progenitor cells using a retroviral vector expressing SV40 Large T flanked by lox P sites. These hepatic cells were bipotent, expressing markers of both hepatocytic and biliary lineages. After transplantation into athymic mice, approximately 50% of immortalized cells engrafted, stopped proliferating after a few days and differentiated in adult hepatocytes, suggesting that the hepatic microenvironment plays an important role in such regulations. Upon infection with a retrovirus expressing the CRE recombinase, immortalized cells stopped growing and died, showing that immortalization was dependant on SV40 Large T. These studies suggest new approaches to expand hepatic progenitor cells, analyse their fate in animal models aiming at cell therapy of hepatic diseases.

Keywords

Adult, Clinical Trials as Topic, Antigens, Polyomavirus Transforming, Stem Cells, Mice, Nude, Cell Differentiation, Simian virus 40, Cell Transformation, Viral, Clone Cells, Liver Regeneration, Rats, Mice, Liver, Hepatocytes, Animals, Humans, Child, Cellular Senescence, Cell Line, Transformed

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    11
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
11
Average
Average
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!