
Photoacoustic imaging (PAI) has achieved remarkable growth in the past few decades since it takes advantage of both optical and ultrasound (US) imaging. In order to better promote the wide clinical applications of PAI, many miniaturized and portable PAI systems have recently been proposed. Most of these systems utilize fiber optic technologies. Here, we overview the fiber optic technologies used in PAI. This paper discusses three different fiber optic technologies: fiber optic light transmission, fiber optic US transmission, and fiber optic US detection. These fiber optic technologies are analyzed in different PAI modalities including photoacoustic microscopy (PAM), photoacoustic computed tomography (PACT), and minimally invasive photoacoustic imaging (MIPAI).
Biosensors, Physics, QC1-999, Ultrasound, Acoustics. Sound, QC221-246, Fiber optic, QC350-467, Photoacoustic imaging, Optics. Light, Research Article
Biosensors, Physics, QC1-999, Ultrasound, Acoustics. Sound, QC221-246, Fiber optic, QC350-467, Photoacoustic imaging, Optics. Light, Research Article
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 82 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
